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Abstract. A q-deformed osp(l.2) superalgebra is de6ned by the use of a pair of q-boson 
annihilation and creation operators. A kind oftwo-component coherent state representation 
of the q-deformed superalgebra is found. And a q-differential realization of the q-deformed 
osp(l,2) superalgebra is obtained. 

1. Introduction 

During recent years, quantum (super)algebras have made their appearance in an 
ever-increasing number of problems in physics and mathematics, ranging from non- 
commutative geometty to integrable systems in statistical mechanics and conformal 
field theory, and solvable models in molecular and nuclear spectroscopy. 

In order to apply quantum (super)algebras in physics, one needs a well-developed 
theory of their irreducible representations. In the case of ordinary Lie (super)algebras, 
the boson realization method [l-31 and related coherent state theory [4] have proved 
very useful for studying representations. Since a q-deformed oscillator was defined in 
terms of q-boson operators [5 ] ,  it has been widely used to construct representations 
of quantum (superjalgebras [6-81. So far the coherent states for a q-deformed oscillator 
and the suJ2) algebra have been investigated in detail by several authors [5,9,10], 
and some applications of them in physics have also been exploited [ll]. 

As is well known, the osp(l,2) superalgebra is one of the most fundamental Lie 
superalgebras, so it is meaningful to study its q-deformed version. Recently, some 
papers have been devoted to the universal enveloping algebra of the q-deformed 
osp(t,2) superalgebra and its representations [8,12]. In this paper, we will define a 
q-deformed osp(l,2) superalgebra in terms of a pair of q-boson operators, and 
construct a type of two-component coherent state representations, and propose a 
q-differential realization for the q-deformed osp( 1,2) superalgebra. 

2. A q-deformed osp(1,Z) superalgebra 

Let us firstly recall the classical osp(l,2j superalgebra 
[ J o , J J = * J *  
[ J o ,  V*I=*fV* IJr, VJ=O [J*,  v - 1 ~  V* 
IV,, Vd=*fJ*  {V+,  V-}=-& 

[J+ , J-] = 250 
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which can be realized in terms of a pair of boson annihilation and creation operators 
b and b' ( [ b ,  b+l=  1) 

J - - $ b + 2  J- = qbz J - 1  o - 2 b  + b + $  c- 

1 1 
V - = - b .  

2v5 
V --b' 

+-2v5 

In order to define the q-deformed osp( 1,2) superalgebra, we introduce the following 
q-deformed operators 

J ! = ( q ! / 2 +  4 -112 )- l a Z  J: = f (N +$) 1 / 2 +  -I /2  1 f2  

4 )- 

J ? = - ( q  q ) - a  
Vg=$(,' /2+ -112 *Pa+ vp_ =;i(ql/2+q-1/2)-1/2a (3) 

where corresponding to b and b+, respectively, a and a' are a pair of q-deformed 
boson operators and satisfy 

(4)  [N,a]=-a [N, a+] = a +  aa+ - q-V2a+a = q N / 2 ,  

The operators a and a' act in a Hilbert space with basis In) (n =0,1,2,. ..),such that 

a In) = v ' b j  In - 1) 

where 

(5) 
a+" 

In) =- lo) Jlnl! a' ln)=Jr;;TTj/n+ 1) 

s /2 -  -x/2 

4 
[xI=4q"+ 4 - l / 2 .  

Making use of equations (4) and (S), one can show that the q-operators defined 
in (3) give rise to a q-deformation of the osp(l,2) superalgebra 

4x - q - x  

[ X I ,  = - q+q-l ' 

It is obvious that the q-deformed osp( 1,2) superalgebra becomes the the ordinary 
osp( 1,2) superalgebra when the deformation parameter q +  1. 

3. Two-component coherent state representations 

Here we will propose a type of two-component coherent state representations of the 
q-deformed osp(l,2) superalgebra. Making use of the q-boson realization of the 
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generators (3), we introduce two states 
ivI" + e2i(r:/ '+q-~/~)"~iv' +)IO) 

2i(q'/'+q-L")1/' 

I& = N(z)(e; cl 

where e:=X"R=ox"/[n]!,  N,(z) and N2(z )  are normalization constants, and z is a 
complex number. 

The analyses helow show that 1 ~ ) ~  together with I Z ) ~  form a kind of coherent state 
of the q-deformed osp(l,2) superalgebra, denoted by { I Z ) ~ ,  1 ~ ) ~ ) .  in which 1 ~ ) ~  and I Z ) ~  
may he regarded as two subspaces (two components) of the coherent states. 

Making use of the q-boson realization of the generators (3) and ( 5 ) ,  one can easily 
check that [z)~ and are eigenstates of the operator J L  

l / 2 +  - , / 2  I 2 J4_Iz),= ( q " 2 +  q-"2)-12212)2. (10) J412)1=(q 9 1- lZ)l 

i(zlz)i = 1 ( i = l , 2 )  (11) 

Nl(z) =4(cosh,(zZ))-"' N2(z) =$(sinh,(zZ))-"2 (12) 

We require that the coherent states are normalized in the form 

then, the normalization constants are given by 

where we have introduced two q-functions 

cosh, x =$(e;+ e;") sinh,x=f(e;- e;"). (13) 

The coherent states have orthogonality relations 

,(z'lz), = 4N1(z)N1(z') cosh,(&) 

2(z'1z)2 =4N2(z)N2(z ' )  sinh,(zi') (14) 

1("=0 

which means that two coherent states in different subspaces are orthogonal each other, 
but not in the same subspace. 

Iz)~}. Since the state 
vectors {In), n = 0,1,2,. . .} are known to form a completeness orthonormal set, the 
problem here may be changed to End the following two weight functions u, (z )  and 
u2(z)  such that 

We now find a resolution of unity for the coherent states 

= I  

where I i s  the identity operator. 
Let I f )  and 18) be two arbitrary vectors, then equation (15) means that 

(f Id=l d,~l (z ) ( f lZ) l l (Zlg)+~ dqu2Z(Z)(f 1~)22(z1g). 
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We now determine the two weight functions. Let 
d,u,(z) = u , ( r ) r  d,r d0 (17) 

where we have set z = r e'', d,r is a q-differential while df3 is an ordinary differential. 
Substituting (9) and (17) into (16), and integrating over the variable 0 from 0 to 

271 we have 

dqu2(z) = u2(r ) r  d,r df3 

Hence, we must have 

(19) 
u2(r)r4"+' 

= 1. 
U,( r )  r4= 

-?!I 2[21 jOm d,r2 [zn]! cosh, r2 = I  Lj0mdqr2[2n+l]!  2[21 sinh,r2 

With the help of techniques of q-analysis, we can find 

ul(r) e$cosh, r2 u2( r )  = e;' sinh, r'. 
57 v 

Therefore, the resolution of unity for the coherent states {[z)~, I&} can be expressed as 

As a result of the above completeness relation, an arbitrary vector 19) can be 
expanded in terms of the coherent states for the q-deformed osp(l,2) superalgebra as 
follows: 

4. A q-differential realization of the q-deformed osp(1,Z) superalgebra 

In this section, we shall present a q-differential realization of the q-deformed osp(l,2) 
superalgebra. For simplicity, we consider a q-differential realization in the unnormal- 
ked coherent state space ( 1 1 ~ ) ~ .  ~ I Z ) ~ }  defined by 

one can find easily the expansion coefficients 
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We now consider the actions of the genrators of the q-deformed osp( 1,2) super- 
algebra on { I ~ Z ) , ,  11z)3. Firstly, we calculate the action of 59: 

=- (q1 /2+  -1/2 1 d2 
4 1- d,z2 112h 

which indicates that the generator J$ acts like a q-differential operator 
- ( q l / 2 +  4 - 1 / 2 ) - 1  d2 

d 42 
on the subspace { ~ I Z ) ~ } .  In the same way, one can obtain the action of J$ on the second 
subspace { l lz)J:  

(25b)  l / Z  - I d ?  
J$llz)2=-(q1’z+q- 1 d,22 1142.  

Then, the action of the generator J S  on {llz},, I ~ Z ) ~ }  may be expressed as 

J$( !if;:) =m( 1:;;:) (26 )  

where 

p ( J $ ) =  -(q”*+ s )  -1/2 -I[? - I). (27) 

d,z2 
Similarly, one can get the actions of the other generators on {I lz), ,  ~ I Z ) ~ } :  

It is straightforward to verify that these matrix q-differential operators in (27), (28)  
and (29) satisfy the commutation and anti-commutation relations of the q-deformed 
osp(l,2) superalgebra, so they give rise to a q-differential realization of the q-deformed 
superalgebra. 
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5. Concluding remarks 

We have defined a q-deformed osp(l,2) superalgebra in terms of one pair of q-boson 
annihilation and creation operators, and constructed two-component coherent state 
representation of the q-deformed superalgebra. It should be mentioned that the two- 
component coherent states for the q-deformed osp(1,Z) superalgebra are, happily, 
q-analogues of the even and odd coherent states [13,14], which have important 
applications in quantum optics. We have also obtained a q-differential of the q- 
deformed osp(1,Z) superalgebra. It is interesting to note that in this q-differential we 
have used only one complex and a q-differential operator without any Grassmann 
variables. 

It is interesting to exploit further applications of the two-component coherent states 
for the q-deformed osp(l,2) superalgebra in nonlinear optics. 
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